A Chebyshev-Gauss-Radau Scheme For Nonlinear Hyperbolic System Of First Order
نویسندگان
چکیده
A numerical approximation of the initial-boundary system of nonlinear hyperbolic equations based on spectral collocation method is presented in this article. A Chebyshev-Gauss-Radau collocation (C-GR-C) method in combination with the implicit RungeKutta scheme are employed to obtain highly accurate approximations to the mentioned problem. The collocation points are the Chebyshev interpolation nodes. This approach reduces this problem to solve system of nonlinear ordinary differential equations which are far easier to be solved. Indeed, by selecting a limited number of collocation nodes, we obtain an accurate results. The numerical examples demonstrate the accuracy, efficiency, and versatility of the method.
منابع مشابه
A Nonlinear Glerkin Method ' The Two - Level Chebyshev Collocation Case
In this article we study the implementation of the Nonlinear Galerkin method as a multiresolution method when a two-level Chebyshev-collocation discretization is used. A fine grid containing an even number of Gauss-Lobatto points is considered. The grid is decomposed into two coarse grids based on half as many Gauss-Radau points. This splitting suggests a decomposition of the unknowns in low mo...
متن کاملA New Spectral Algorithm for Time-space Fractional Partial Differential Equations with Subdiffusion and Superdiffusion
This paper reports a new spectral collocation algorithm for solving time-space fractional partial differential equations with subdiffusion and superdiffusion. In this scheme we employ the shifted Legendre Gauss-Lobatto collocation scheme and the shifted Chebyshev Gauss-Radau collocation approximations for spatial and temporal discretizations, respectively. We focus on implementing the new algor...
متن کاملChebyshev finite difference method for a two−point boundary value problems with applications to chemical reactor theory
In this paper, a Chebyshev finite difference method has been proposed in order to solve nonlinear two-point boundary value problems for second order nonlinear differential equations. A problem arising from chemical reactor theory is then considered. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a non-uniform finite difference schem...
متن کاملConvergence Results for Pseudospectral Approximations of Hyperbolic Systems by a Penalty - Type Boundary Treatment
In a previous paper we have presented a new method of imposing boundary conditions in the pseudospectral Chebyshev approximation of a scalar hyperbolic equation. The novel idea of the new method is to collocate the equation at the boundary points as well as in the inner grid points, using the boundary conditions as penalty terms. In this paper we extend the above boundary treatment to the case ...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کامل